首页 | 本学科首页   官方微博 | 高级检索  
     


Fracture and fractography of metastable austenites
Authors:W W Gerberich  P L Hemmings  V F Zackay
Affiliation:1. Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minn.
2. Kaiser Aluminum Research Center, Pleasanton, Calif.
3. Department of Materials Science and Engineering, University of California, Berkeley, Calif.
Abstract:External test variables such as rate and temperature, and changes in alloy composition are shown to have a number of effects on the fracture of high-strength, metastable austenitic steels. One rate-dependent phenomenon is an unusual fracture mode transition wherein a flat mode changes to a shear mode when the amount of transformation product in the vicinity of the crack tip is reduced by adiabatic heating. The point at which this happens in any one test is dependent upon the velocity of the slowly growing crack which in turn is dependent upon the crosshead rate. Because of this rate effect, the plane stress fracture toughness decreases by as much as 30 pct at higher crosshead rates. Fractographically, it was ascertained that at room temperature, both phases failed in a ductile manner, but at ?196°C, martensite containing greater than about 0.27 wt pct C would cleave. This resulted in a “ductile-brittle” transition in metastable austenites at ?196°C as a function of carbon content. Other compositional variations change the austenite stability which controls the amount of strain-induced marteniste occurring at the crack tip. It is shown that a plane stress fracture toughness (K C) approaching 500,000 psi-in.1/2 may be achieved by decreasing the stability of the austenite. The variation ofK c with austenite stability agrees qualitatively with a theoretical model for the invariant shear contribution to the fracture toughness of metastable austenites.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号