首页 | 本学科首页   官方微博 | 高级检索  
     


Stress-induced martensite formation in Cu−Al−Ni alloys
Authors:K Oishi  L C Brown
Affiliation:1. Furukawa Electric Company, Tokyo, Japan
2. Department of Metallurgy, University of British Columbia, Vancouver, Canada
Abstract:A study has been made of superelasticity and the strain-memory effect in Cu?Al?Ni alloys in the composition range 14 wt pct Al and 2 to 3 wt pct Ni. These alloys have a bcc structure on quenching and show a low temperature martensitic transformation which is responsible for both the superelastic and strain-memory effects. Tests on both single and polycrystalline specimens showed that the maximum superelasticity occurred close toA s. At higher temperatures the effect gradually decreased, whilst at lower temperatures it decreased very quickly. The magnitude of the effect was large in single crystal specimens (>5.8 pct), but small in polycrystal specimens (<1.5 pct). The superelastic effect was caused by stress-induced martensite (SIM). Two types of SIM were observed; thin plates of thermoelastic martensite which were always reversible, and wide plates of burst-type martensite. This burst-type martensite was responsible for the major portion of SIM, and whether it was reversible or not on removal of the stress controlled the amount of superelasticity observed. The strain-memory effect occurred on deformation either in the martensitic state (temperature <M f) or in the temperature range where the martensite once formed was stable (temperature close toM s). Deformation caused reorientation of the martensite plates and when the specimen was heated, the martensite disappeared and the specimen reverted back to its original shape. This effect was explained on the basis of development of martensite plates of favorable orientation on stressing.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号