首页 | 本学科首页   官方微博 | 高级检索  
     


In vitro characterization of late steps of RNA recombination in turnip crinkle virus.II. The role of the priming stem and flanking sequences
Authors:PD Nagy  AE Simon
Affiliation:Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts, 01003, USA.
Abstract:Turnip crinkle carmovirus (TCV) has a uniquely high recombination frequency and nonrandom cross-over site distribution among the recombining TCV-associated satellite RNAs. An in vitro system has been developed that includes a partially purified TCV replicase preparation (RdRp) and chimeric RNAs that resemble the putative in vivo recombination intermediates (Nagy, P. D., Zhang, C., and Simon, A. E., EMBO J. 17, 2392-2403, 1998). This system mimics the strand transfer and primer extension steps of recombination events. We characterize in detail three RNA factors that, in addition to the previously characterized motif1-hairpin, can influence the efficient generation of 3'-terminal extension products: (i) a primer binding region, termed the priming stem; (ii) a spacer region; and (iii) a U-rich sequence located 5' of the motif1-hairpin. The priming stem is formed between the acceptor RNA and the nascent RNA synthesized from the donor RNA template in the recombinants. The stability and location of the priming stem relative to the motif1-hairpin can influence both the efficiency and initiation site of 3'-terminal extension. A short flexible spacer region between the motif1-hairpin and the priming stem can increase the efficiency of 3'-terminal extensions. A U-rich sequence 5' of the motif1-hairpin facilitates 3'-terminal extensions and its function partly overlaps with that of the spacer region. These RNA factors may also affect the late steps of RNA recombination in TCV.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号