首页 | 本学科首页   官方微博 | 高级检索  
     


Feature‐Preserving Surface Reconstruction From Unoriented,Noisy Point Data
Authors:J Wang  Z Yu  W Zhu  J Cao
Affiliation:1. Computer Science Department, University of Wisconsin‐Milwaukee, WI, USA davis.wjun@gmail.com;2. yuz@uwm.edu;3. Department of Mechanical Engineering, Zhejiang University, Hangzhou, China wdzhu@zju.edu.cn;4. School of Mathematical Sciences, Dalian University of Technology, Dalian, China jjcao1231@gmail.com
Abstract:We propose a robust method for surface mesh reconstruction from unorganized, unoriented, noisy and outlier‐ridden 3D point data. A kernel‐based scale estimator is introduced to estimate the scale of inliers of the input data. The best tangent planes are computed for all points based on mean shift clustering and adaptive scale sample consensus, followed by detecting and removing outliers. Subsequently, we estimate the normals for the remaining points and smooth the noise using a surface fitting and projection strategy. As a result, the outliers and noise are removed and filtered, while the original sharp features are well preserved. We then adopt an existing method to reconstruct surface meshes from the processed point data. To preserve sharp features of the generated meshes that are often blurred during reconstruction, we describe a two‐step approach to effectively recover original sharp features. A number of examples are presented to demonstrate the effectiveness and robustness of our method.
Keywords:unoriented noisy point data  surface reconstruction  robust statistics  feature‐preserving reconstruction  Computing methodologies  Computer graphics  Shape modeling  Point‐based models
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号