首页 | 本学科首页   官方微博 | 高级检索  
     

铝合金板快速加热弯曲的参数预测
引用本文:王续跃,王劲松,徐文骥,程丽芳,吴东江. 铝合金板快速加热弯曲的参数预测[J]. 光学精密工程, 2007, 15(6): 915-921
作者姓名:王续跃  王劲松  徐文骥  程丽芳  吴东江
作者单位:大连理工大学,精密与特种加工教育部重点实验室,辽宁,大连,116024;大连理工大学,精密与特种加工教育部重点实验室,辽宁,大连,116024;大连理工大学,精密与特种加工教育部重点实验室,辽宁,大连,116024;大连理工大学,精密与特种加工教育部重点实验室,辽宁,大连,116024;大连理工大学,精密与特种加工教育部重点实验室,辽宁,大连,116024
摘    要:基于BP神经网络平台,建立了铝合金板快速加热弯曲的角度预测BP网络模型,实现了脉冲激光加工工艺的参数控制与优化。通过试验获得样本数据,将试验样本数据用于BP网络的训练,利用训练好的BP网络对非线性的样本数据规律进行拟合,对脉冲激光弯曲角度和工艺参数进行准确的预测,预测误差范围可控制在<5~8%,研究结果为实际生产中精密成形提供了有效的理论与试验依据。

关 键 词:精密成形  激光加热  激光弯曲  铝合金板  参数预测
文章编号:1004-924X(2007)06-0915-07
收稿时间:2006-12-11
修稿时间:2006-12-112007-01-07

Parameter prediction of bending of aluminum alloy sheet induced by laser prompt heating
WANG Xu-yue,WANG Jin-song,XU Wen-ji,CHENG Li-fang,Wu Dong-jiang. Parameter prediction of bending of aluminum alloy sheet induced by laser prompt heating[J]. Optics and Precision Engineering, 2007, 15(6): 915-921
Authors:WANG Xu-yue  WANG Jin-song  XU Wen-ji  CHENG Li-fang  Wu Dong-jiang
Affiliation:Key Laboratory for Precision and Non-traditional Machining Technology, Ministry of Education, Dalian University of Technology, Dalian l16024,China
Abstract:Based on the basic platform of BP neural network,a BP network model was founded to predict the bending angle in the process of laser bending of aluminum alloy sheet to optimize laser bending parameter control.The sample data obtained from experiment were used to train BP network.The nonlinear regularities of sample data were fitted through trained BP network,the predicted results include laser bending angles and laser bending parameters.Experimental results indicate the prediction allowance is controlled less than 5~8 %,it can provide effective foundation both theory and experiment for industry purpose.
Keywords:precise shaping   laser heating   laser bending  aluminum alloy sheet   parameter prediction
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《光学精密工程》浏览原始摘要信息
点击此处可从《光学精密工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号