首页 | 本学科首页   官方微博 | 高级检索  
     


A contact force solution for non-colliding contact dynamics simulation
Authors:Inna Sharf  Yuning Zhang
Affiliation:(1) Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, Quebec, H3A 2K6, Canada
Abstract:Rigid-body impact modeling remains an intensive area of research spurred on by new applications in robotics, biomechanics, and more generally multibody systems. By contrast, the modeling of non-colliding contact dynamics has attracted significantly less attention. The existing approaches to solve non-colliding contact problems include compliant approaches in which the contact force between objects is defined explicitly as a function of local deformation, and complementarity formulations in which unilateral constraints are employed to compute contact interactions (impulses or forces) to enforce the impenetrability of the contacting objects. In this article, the authors develop an alternative approach to solve the non-colliding contact problem for objects of arbitrary geometry in contact at multiple points. Similarly to the complementarity formulation, the solution is based on rigid-body dynamics and enforces contact kinematics constraints at the acceleration level. Differently, it leads to an explicit closed-form solution for the normal forces at the contact points. Integral to the proposed formulation is the treatment of tangential contact forces, in particular the static friction. These friction forces must be calculated as a function of microslip velocity or displacement at the contact point. Numerical results are presented for four test cases: (1) a thin rod sliding down a stationary wedge; (2) a cube pushed off a wedge by an applied force; (3) a cube rotating off the wedge under application of an external moment; and (4) the cube and the wedge both moving under application of a moment. To ascertain validity and correctness, the solutions to frictionless and frictional scenarios obtained with the new formulation are compared to those generated by using a commercial simulation tool MSC ADAMS.
Keywords:Contact dynamics  Rigid bodies  Non-colliding  Multiple points  Normal force  Explicit solution  Friction
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号