首页 | 本学科首页   官方微博 | 高级检索  
     


Region-specific DNA synthesis in brains of F344 rats following a six-day bromodeoxyuridine infusion
Authors:B Bolon  C Dunn  TL Goldsworthy
Affiliation:Chemical Industry Institute of Toxicology (CIIT), Research Triangle Park, North Carolina 27709, USA. bolonb@war.wyeth.com
Abstract:Prolonged exposure to certain alkylating chemicals induces glial and meningeal tumours in rats, probably resulting from DNA damage to dividing neural cells. The present work evaluated DNA synthesis in the brains of untreated, young adult male F344 rats in order to define a BrdUrd infusion protocol to more adequately assess proliferation in slowly dividing neural cell populations. BrdUrd (2.5 to 160 mg/ml) was administered for 6 days via subcutaneous osmotic pumps. Clinical toxicity was not observed at any dose. The labelling index (LI; % of cells per brain area that incorporated BrdUrd) and unit length labelling index (ULLI; % of cells per meningeal length that incorporated BrdUrd) were calculated for selected regions by counting labelled neural cells in defined areas of the right hemisphere in coronal brain sections. Intensely stained cells were numerous in the cerebral subependymal layer (LI = 35.8%); scattered in cerebral white matter tracts (e.g. corpus callosum and internal capsule; LI = 6.2%) as well as cerebral (ULLI = 4.2%) and cerebellar (ULLI = 3.6%) meninges; and rare in the hippocampus (LI > 0.1%). Mildy stained cells were dispersed in the pons (LI = 2.1%), deep cerebral (LI = 1.8%) and cerebellar (LI = 1.0%) grey matter, and thalamus (LI = 0.3%). Phenotypically, BrdUrd-positive cells in neuropil were glial cell precursors and their progeny, while those associated with meninges were usually located in the superficial subarachnoid space and appeared to be fibrocytes. Using BrdUrd infusion, LI for glial precursors at these sites ranged from two- to 10-fold higher than those reported previously after a brief parenteral pulse dose. These data indicate that continuous BrdUrd infusion for 6 days by subcutaneous osmotic pump is an efficient means of labelling neural cells throughout the brain.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号