摘 要: | 当前,喷墨打印在制造电子电路过程中,工艺参数对印制电路的导线线宽和电阻影响尚未明确,这会导致在实际生产过程中难以配置最优工艺参数组合,从而降低产品的最终质量。针对此问题,基于GA-BP神经网络对喷墨打印电子电路的导线线宽和电阻进行了精确预测与优化。首先,通过探究神经网络的神经元个数与模型均方误差的关系,建立了适用于喷墨打印电路导线线宽与电阻的GA-BP神经网络;其次,采用全因子实验的方法,获取基板温度、打印速度、打印层数和延迟时间对印制电路导线线宽和电阻的影响,此外,对比分析BP和GA-BP神经网络对于电路导线质量的预测精度并确定了打印参数对质量的拟合方程;最后,通过遗传算法对导线线宽和电阻进行工艺参数优化,并对二者的优化结果进行实验验证。实验结果表明,导线线宽和电阻的测量值和预测值的相对误差在5%之内,该模型能够准确实现对电子电路质量的预测与参数优化,从而提升电路质量,为产品的研发设计提供了有力参考。
|