Abstract: | Many structural design problems in the field of civil engineering are naturally multi-criteria, i.e., they have several conflicting objectives that have to be optimized simultaneously. An example is when we aim to reduce the weight of a structure while enhancing its robustness. There is no a single solution to these types of problems, but rather a set of designs representing trade-offs among the conflicting objectives. This paper focuses on the application of multi-objective metaheuristics to solve two variants of a real-world structural design problem. The goal is to compare a representative set of state-of-the-art multi-objective metaheuristic algorithms aiming to provide civil engineers with hints as to what optimization techniques to use when facing similar problems as those selected in the study presented in this paper. Accordingly, our study reveals that MOCell, a cellular genetic algorithm, provides the best overall performance, while NSGA-II, the de facto standard multi-objective metaheuristic technique, also demonstrates a competitive behavior. |