首页 | 本学科首页   官方微博 | 高级检索  
     

基于二级聚类的家宽异常数据分析与应用
引用本文:钟其柱,李柏欣. 基于二级聚类的家宽异常数据分析与应用[J]. 电信工程技术与标准化, 2021, 0(10)
作者姓名:钟其柱  李柏欣
作者单位:中国移动通信集团广东有限公司中山分公司 中山 528400,中国移动通信集团广东有限公司中山分公司 中山 528400
摘    要:为充分挖掘家宽异常数据信息、直观了解家宽异常情况,针对用户端反馈家宽异常事件相关指标的具体数据,提出了一种基于异常主导因素和严重程度的综合评价体制,在此基础上分别利用余弦相关性和曼哈顿距离对归一化后的常见异常数据进行二级聚类,最终对常见家宽异常数据进行类别划分。现网数据实践表明,该方法可将大量无规则家宽异常数据划分为特点各异的若干类,并提取出需重点整改信息,并可建立一个预测准确率较高的KNN分类模型。

关 键 词:家庭宽带;聚类;异常分析;质量评价
收稿时间:2020-10-20
修稿时间:2020-12-24

Analysis and application of home broadband anomaly data based on two-stage clustering
Qizhu Zhong and LI Bai-xin. Analysis and application of home broadband anomaly data based on two-stage clustering[J]. Telecom Engineering Technics and Standardization, 2021, 0(10)
Authors:Qizhu Zhong and LI Bai-xin
Affiliation:Zhongshan Branch of China Mobile Group Guangdong corporation Zhongshan 528400,Zhongshan Branch of China Mobile Group Guangdong corporation Zhongshan 528400
Abstract:To fully explore abnormal home broadband data, perspicuously understanding abnormal home broadband situation, considering the specific user feedback data of indicators related to abnormal home broadband events, a kind of comprehensive evaluation system including dominant factors and the severity was proposed, and on this basis, with a hierarchical clustering using cosine correlation and Manhattan distance of normalized data respectively, the abnormal data was divided into several different categories. Practice with data from existing network shows that the proposed method can effectively divide a large amount of irregular abnormal home broadband data into different characteristics of several classes, extract the notable abnormal information, and can establish a KNN classification model with high prediction accuracy.
Keywords:home broadband   abnormal analysis   clustering   quality evaluation
点击此处可从《电信工程技术与标准化》浏览原始摘要信息
点击此处可从《电信工程技术与标准化》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号