首页 | 本学科首页   官方微博 | 高级检索  
     

预测日径流过程的双线性模型
引用本文:金菊良,杨晓华,金保明,丁晶. 预测日径流过程的双线性模型[J]. 水电能源科学, 2000, 18(2): 11-13,23
作者姓名:金菊良  杨晓华  金保明  丁晶
作者单位:1. 四川大学,水电学院,四川,成都,610065
2. 河海大学,数学物理系,江苏,南京,210098
3. 福建省南平市水电局,福建,南平,353000
基金项目:国家自然科学基金 !( 4 98710 18),中国博士后科学基金,四川大学高速水力学国家重点实验室开放基金!( 990 4)资助项目
摘    要:提出了建立双线性模型(BM)的一套简便实用的方案。实例计算说明:①这套方案在日径流过程预测中可行而有效的;②通过利用预测过程中产生的残差信息进行反馈矫正,保证了BM模型高的拟合精度和稳健的预测性能,并增强了复杂非线性动态系统的适应性。e

关 键 词:双线性模型 日径流过程 非线性 预测

A Genetic Bilinear Time Series Model for Predicting the Daily Flow Process
JIN Ju-liang,YANG Xiao-hu,JIN Bao-ming,DING Jing. A Genetic Bilinear Time Series Model for Predicting the Daily Flow Process[J]. International Journal Hydroelectric Energy, 2000, 18(2): 11-13,23
Authors:JIN Ju-liang  YANG Xiao-hu  JIN Bao-ming  DING Jing
Abstract:A simple and practical scheme is presented for developing a bilinear time series model (BM). The computational results of an example show that the scheme applied to predicting the daily flow process is feasible and efficient and that BM can ensure high fitting precision, robust forecasting and good adaptability to complex nonlinear dynamic systems by using the feedback information of prediction residual errors. As a general approach, the scheme is of major theoretical value and wide ranging applicability for predicting nonlinear time series.
Keywords:bilinear time series model  daily flow process  nonlinearity  prediction  genetic algorithm
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号