首页 | 本学科首页   官方微博 | 高级检索  
     


Prediction of thermal and fluid flow characteristics in helically coiled tubes using ANFIS and GA based correlations
Authors:Reza Beigzadeh  Masoud Rahimi
Affiliation:CFD Research Center, Chemical Engineering Department, Razi University, Kermanshah, Iran
Abstract:This study introduces the ability of Adaptive Neuro-Fuzzy Inference System (ANFIS) and genetic algorithm (GA) based correlations for estimating the hydrodynamics and heat transfer characteristics in coiled tubes. The experimental data related to the heat transfer and pressure drop in helically coiled tubes with deferent geometrical parameters (coil diameter and pitch) were used. In the experiments, hot water was passed in the coiled tubes, which were placed in a cold bath. Two ANFIS models were developed for predicting the Nusselt number (Nu) and friction factor (f) in the coiled tubes and the geometric parameters were employed as input data. Moreover, empirical correlations for estimating the Nu and f were developed by a phenomenological argument in the form of classical power–law correlations and their constants were found using the GA technique. The mean relative errors (MRE) of the developed ANFIS models for estimation of Nu and f are 6.24% and 3.54%, respectively. On the other hand, for empirical correlations, a MRE of 8.06% was found for prediction Nu while MRE of 5.03% was obtained for f. The results show that the ANFIS models can predict Nu and f with the higher accuracy than the developed correlations.
Keywords:Helically coiled tube  Adaptive Neuro-Fuzzy Inference System  Genetic Algorithm  Heat transfer  Friction factor
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号