首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于深度学习的视觉里程计算法
引用本文:张再腾,张荣芬,刘宇红. 一种基于深度学习的视觉里程计算法[J]. 激光与光电子学进展, 2021, 58(4): 316-323
作者姓名:张再腾  张荣芬  刘宇红
作者单位:贵州大学大数据与信息工程学院,贵州贵阳550025
基金项目:贵州省科技计划项目(黔科合平台人才[2016]5707)。
摘    要:近年来,视觉里程计广泛应用于机器人和自动驾驶等领域,传统方法求解视觉里程计需基于特征提取、特征匹配和相机校准等复杂过程,同时各个模块之间要耦合在一起才能达到较好的效果,且算法的复杂度较高.环境噪声的干扰以及传感器的精度会影响传统算法的特征提取精度,进而影响视觉里程计的估算精度.鉴于此,提出一种基于深度学习并融合注意力机...

关 键 词:机器视觉  深度学习  视觉里程计  注意力机制  多任务学习

Visual Odometry Algorithm Based on Deep Learning
Zhang Zaiteng,Zhang Rongfen,Liu Yuhong. Visual Odometry Algorithm Based on Deep Learning[J]. Laser & Optoelectronics Progress, 2021, 58(4): 316-323
Authors:Zhang Zaiteng  Zhang Rongfen  Liu Yuhong
Affiliation:(College of Big Data and Information Engineering,Guizhou University,Guiyang,Guizhou 550025,China)
Abstract:Recently,visual odometry has been widely used in robotics and autonomous driving.Traditional methods for addressing visual odometry are based on complex processes such as feature extraction,feature matching,and camera calibration.Moreover,each module must be integrated to achieve improved results,and the algorithm is high complexity.The interference of environmental noise and the accuracy of the sensor affect the feature extraction accuracy of the traditional algorithm,thereby affecting the estimation accuracy of the visual odometer.In this context,a visual mileage calculation method based on deep learning and fusion attention mechanism is proposed.The proposed method can eliminate the complicated operation process of traditional algorithms.Experimental results show that the proposed algorithm can estimate the camera odometer in real time achieves improved accuracy and stability and reduced network complexity.
Keywords:machine vision  deep learning  visual odometry  attention mechanism  multi-task learning
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号