首页 | 本学科首页   官方微博 | 高级检索  
     


Near-ohmic behavior for conducting polymers: extension beyond PEDOT on gold-plated platinum to other polymer-counterion/substrate combinations
Authors:Kayinamura Yohani P  Roberts Julia H  Rubinson Judith F
Affiliation:Department of Chemistry, Georgetown University, Washington, DC 20057, USA.
Abstract:Conducting polymers constitute a class of materials for which electrochemical and electron transport properties are a function not only of their chemical identity but also of their complex morphology. In this paper, we investigate and compare the frequency dependence behavior of the impedance of poly(3,4-ethylenedioxythiophene), or PEDOT, and that of poly(3,4-ethylenedioxypyrrole), or PEDOP, which are doped with a series of polyatomic anions during electrodeposition. We also contrast the behavior of PEDOT on Pt|Au, Pt, glassy carbon, and gold. Initial results for polycarbazole, PCz, electrodes are, in addition, included. Deposition parameters were adjusted to produce morphologically similar films for PEDOT, PEDOP, and PCz. In doing so, we have been successful in producing frequency-independent impedance behavior similar to that previously reported for PEDOT on Pt|Au. Although the impedance behavior of these polymers appears to be primarily determined by morphological features, the impact of counterion identity (beyond ionic charge transport) is also discussed. These studies suggest that choice of polymer/dopant combination and electrodeposition parameters can be manipulated to tune the impedance characteristics of electrodes, thereby optimizing them for capacitive or faradaic charge injection, or some combination of the two.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号