首页 | 本学科首页   官方微博 | 高级检索  
     


Efficient drying and oxygen-containing functional groups characteristics of lignite during microwave irradiation process
Authors:Lin Hu  Qingdong Wang
Affiliation:Hubei Coal Conversion and New Carbon Material Key Laboratory, School of Chemical and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
Abstract:To remove the high moisture of ZhaoTong lignite, the efficient drying characteristics and oxygen-containing functional groups changes in lignite during microwave irradiation process were highlighted in this study. As the microwave absorbers, lignite char and NaNO3 were added to microwave drying of ZhaoTong lignite. The minimum chemical oxygen demand of waste water generated from microwave drying process of lignite was 99.89?mg?O2?L?1. The effects of microwave power, lignite mass, the weight ratio of lignite char to lignite and NaNO3 content on the drying rate, and moisture diffusion coefficient of lignite were investigated during lignite microwave irradiation process. It was found that the drying rate and moisture diffusion coefficient of lignite increased with increasing microwave power, the weight ratio of lignite char to lignite and NaNO3 content, but decreased with increasing lignite mass. Lignite char and NaNO3 were mixed with lignite that can enhance the instantaneous surface temperature of lignite sample under microwave irradiation. Compared with addition of lignite char to lignite, the addition of NaNO3 to lignite can decrease the unit electric power consumption of moisture evaporating. And the minimum unit electric power consumption of moisture evaporating was 9.44?Wh?g?1. The FTIR technology was used to investigate the oxygen-containing functional groups changes in lignite during microwave drying process. The oxygen-containing functional groups of lignite were effectively removed with increasing microwave power.
Keywords:Energy consumption  lignite char  NaNO3  the instantaneous surface temperature  the oxygen-containing functional groups
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号