首页 | 本学科首页   官方微博 | 高级检索  
     


Characterizing fruit fly flight behavior using a microforce sensor with a new comb-drive configuration
Authors:Yu Sun Fry  SN Potasek  DP Bell  DJ Nelson  BJ
Affiliation:Dept. of Mech., Univ. of Toronto, Ont., Canada;
Abstract:This paper reports a MEMS microforce sensor with a novel configuration of bulk micromachined differential triplate comb drives that overcomes the difficulty of electrically isolating the two stationary capacitor comb sets in bulk micromachining. A high-yield fabrication process using deep-reactive ion etching (DRIE) on silicon-on-insulator (SOI) wafers and only three lithographic masks was utilized to construct the high aspect ratio devices. The process features dry release of both suspended structures and the entire device in order to protect fragile components. The sensor has a high sensitivity (1.35 mV//spl mu/N), good linearity (<4%), and a large bandwidth (7.8 kHz), and is therefore well suited for characterizing flight behavior of fruit flies (Drosophila melanogaster). The technique allows for the instantaneous measurement of flight forces, which result from a combination of aerodynamic forces and inertial forces generated by the wings, and demonstrates a novel experimental paradigm for exploring flight biomechanics in the fruit fly. The average lift force is determined to be 9.3 /spl mu/N (/spl plusmn/2.3 /spl mu/N), which is in the range of typical body weights of fruit flies. The potential impact of this research extends beyond gathering flight data on Drosophila melanogaster by demonstrating how MEMS technology can be used to provide valuable tools for biomechanical investigations.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号