首页 | 本学科首页   官方微博 | 高级检索  
     


(Abstracts)Changing Industrial Demands
Abstract:Abstract

The frequency dependence of discomfort caused by vertical mechanical shocks has been investigated with 20 seated males exposed to upward and downward shocks at 13 fundamental frequencies (1–16 Hz) and 18 magnitudes (±0.12 to ±8.3 ms?2). The rate of growth of discomfort with increasing shock magnitude depended on the fundamental frequency of the shocks, so the frequency dependence of equivalent comfort contours (for both vertical acceleration and vertical force measured at the seat) varied with shock magnitude. The rate of growth of discomfort was similar for acceleration and force, upward and downward shocks, and lower and higher magnitude shocks. The frequency dependence of discomfort from shocks differs from that of sinusoidal vibrations having the same fundamental frequencies. This arises in part from the frequency content of the shock. Frequency weighting Wb in BS 6841:1987 and ISO 2631-1:1997 provided reasonable estimates of the discomfort caused by the shocks investigated in this study.

Practitioner Summary: No single frequency weighting can accurately predict the discomfort caused by mechanical shocks over wide ranges of shock magnitude, but vibration dose values with frequency weighting Wb provide reasonable estimates of discomfort caused by shocks similar to those investigated in this study with peak accelerations well below 1 g.
Keywords:Ride comfort  mechanical shocks  shock magnitude  force
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号