首页 | 本学科首页   官方微博 | 高级检索  
     


Whole-body vibration and visual performance: an examination of spatial filtering and time-dependency
Abstract:Two experiments have examined the effects of whole-body vibration on visual performance. The first experiment concerned alphanumeric reading performance and contrast thresholds for gratings subtending 7-5, 10 and 12-5 cycles per degree (c deg)?1. Seated subjects were exposed to vertical sinusoidal whole-body vibration (4 Hz, 2-5 ms?2 r.m.s.). Greatest reading errors occurred with characters exhibiting a high spatial complexity in their vertical axis. Reductions in contrast sensitivity due to vibration increased with increasing spatial frequency, the greatest loss occurring with horizontally orientated gratings.

In the second experiment, contrast thresholds for horizontally orientated gratings subtending 1-5 and 12-5cdeg?1 were obtained from ten subjects at five-minute intervals during a 60-minute whole-body vibration exposure (20 Hz I -7 m s ?2 r.m.s.), a 20-minute pre-exposure and a 60-minute post-exposure period. There were no significant changes in contrast thresholds for gratings subtending 1-5cdegminus;1 during or after vibration exposure. A large variation was found in the effect of vibration upon performance with the higher spatial frequency grating both during and after vibration exposure. Significant correlations between vertical head motion and contrast sensitivity were obtained with five of the ten subjects, suggesting that time-dependent changes in seat-to-head transmissibility were partly responsible for the results. Other time-dependent changes were found with the high spatial frequency grating. Possible explanations are discussed.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号