首页 | 本学科首页   官方微博 | 高级检索  
     

基于YOLO的无人机电力线路杆塔巡检图像实时检测
引用本文:郭敬东,陈彬,王仁书,王佳宇,仲林林. 基于YOLO的无人机电力线路杆塔巡检图像实时检测[J]. 中国电力, 2019, 52(7): 17-23. DOI: 10.11930/j.issn.1004-9649.201812028
作者姓名:郭敬东  陈彬  王仁书  王佳宇  仲林林
作者单位:1. 国网福建省电力有限公司电力科学研究院, 福建 福州 350007;2. 东南大学 电气工程学院, 江苏 南京 210096
基金项目:国家自然科学基金资助项目(518070280);国家电网有限公司科技项目(52130418000L)。
摘    要:无人机巡检已成为电力线路灾后巡检的重要方式。然而,目前的无人机巡检仍主要通过人工方式评估线路灾损,不仅费时费力,而且准确率低。提出了一种基于深度学习算法(YOLO)的实时目标检测模型,用于灾后根据无人机巡检视频实时检测电力杆塔的状态。通过对倒断类杆塔图像进行数据增广,解决了杆塔类别不平衡问题。通过使用K-means算法对杆塔数据集的目标框进行重新聚类,改进了YOLO算法参数。测试结果表明,该模型能有效检测多种环境下多种尺度的杆塔目标。改进后的模型在测试集上的召回率和交并比(IoU)较改进前有所提高,且平均均值精度(mAP)达到94.09%,检测速度达到20帧/s。此外,也对更快的简化版YOLO模型进行了测试,检测速度能达到30帧/s。

关 键 词:无人机巡检  电力杆塔  深度学习  YOLO  数据增广  人工智能与大数据应用  
收稿时间:2018-12-12
修稿时间:2019-03-19

YOLO-Based Real-Time Detection of Power Line Poles from Unmanned Aerial Vehicle Inspection Vision
GUO Jingdong,CHEN Bin,WANG Renshu,WANG Jiayu,ZHONG Linlin. YOLO-Based Real-Time Detection of Power Line Poles from Unmanned Aerial Vehicle Inspection Vision[J]. Electric Power, 2019, 52(7): 17-23. DOI: 10.11930/j.issn.1004-9649.201812028
Authors:GUO Jingdong  CHEN Bin  WANG Renshu  WANG Jiayu  ZHONG Linlin
Affiliation:1. State Grid Fujian Electric Power Research Institute, Fuzhou 350007, China;2. Department of Electrical Engineering, Southeast University, Nanjing 210096, China
Abstract:Unmanned aerial vehicles (UAV)-based inspection has become an important approach for power line inspection after disaster. However, the current UAV-based inspection is still performed manually for damage assessments, which is not only time-consuming but also poor in accuracy. In this paper a real-time detection model based on YOLO deep learning algorithm is presented to detect the status of power line poles automatically from the UAV vision data after disaster. The data augmentation is performed for collapsed towers to solve the class imbalance problem. To improve the parameters of YOLO, K-means algorithm is used to cluster object frames of pole data. The experimental results show that the proposed model can effectively detect multi-scale towers in multiple environments. The Recall and Intersection-over-Union (IoU) of the improved YOLO are improved, with the mean average precision (mAP) on the test set of 94.09% and the average processing speed of 20 frames per second (FPS) after improving the parameters. Moreover, we tested the simplified YOLO with faster speed, and the average processing speed reaches 30 FPS.
Keywords:UAV inspection  power line poles  deep learning  YOLO  data augmentation  artificial intelligence and big data application  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国电力》浏览原始摘要信息
点击此处可从《中国电力》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号