首页 | 本学科首页   官方微博 | 高级检索  
     

基于神经网络的高速飞行体定位技术研究
引用本文:曲婧. 基于神经网络的高速飞行体定位技术研究[J]. 电子测试, 2010, 0(2): 27-30
作者姓名:曲婧
作者单位:中北大学,电子测试技术国家重点实验室,太原,030051
摘    要:在对远程高速运动目标进行定位的过程中,如何提高定位精度是工程研究的重要内容之一。本文提出了一种基于RBF神经网络的多站无源时差定位方法,针对4种常见布站方式(星形、菱形、倒三角形和平行四边形)的定位误差进行了分析比较并给出了曲线仿真结果。仿真实例验证,该方法具有较高的定位精度且操作简单,为实际工程设计提供了参考。

关 键 词:RBF网络  无源定位  时差定位

Research of the high-speed moving target positioning technology based on RBF neural network
Qu Jing. Research of the high-speed moving target positioning technology based on RBF neural network[J]. Electronic Test, 2010, 0(2): 27-30
Authors:Qu Jing
Affiliation:Qu Jing(Institute of Signal Capturing & Processing Technology,North University of China,Taiyuan,030051,China)
Abstract:In the process of positioning of the long-range high-speed moving targets, how to improve the positioning accuracy is one of the important aspects of engineering. In this paper, we present a multi-station passive TDOA location method based on RBF neural network, analyze and compare the Positioning errors of the four common disposition types (Star, diamond, inverted triangle and parallelogram) and give the simulation curve results. Validate through examples, this method which has a high positioning accuracy ...
Keywords:RBF neural network  Passive location  TDOA location  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号