首页 | 本学科首页   官方微博 | 高级检索  
     


Rheological and conductive percolation laws for syndiotactic polystyrene composites filled with carbon nanocapsules and carbon nanotubes
Authors:Chien-Lin Huang  Chi Wang
Affiliation:Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
Abstract:Semicrystalline syndiotactic polystyrene (sPS) composites with carbon nanocapsule (CNC) and carbon nanotube (CNT) fillers were prepared and good filler dispersion confirmed by electron microscopy. Their rheological and electrical properties were investigated to reveal the effect of filler aspect ratio. Amorphous atactic polystyrene (aPS) was used to prepare composites with a CNT filler to elucidate the effect of matrix tacticity. Percolation scaling laws are applied and the threshold concentration and exponent are determined. Above a threshold, the magnitudes of storage modulus (G′) and conductivity are related to the level of percolation network as well as the intrinsic properties of the matrix and filler. Master curves are obtained provided that an appropriate percolation function is selected. Different scaling laws are validated for the G′ and conductivity results.Composites with CNTs show a much lower threshold than those with CNCs. A lower threshold is derived from the G′ results compared to that obtained from the conductivity data regardless of the filler aspect ratio and matrix tacticity. Owing to the pronounced nucleating effects of CNT, crystalline sPS composites exhibit a four times larger conductivity threshold compared to their amorphous aPS counterparts, although their rheological thresholds are similar.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号