首页 | 本学科首页   官方微博 | 高级检索  
     


Breakdown of the protective oxide on 11 % Cr steel at high temperature in the presence of water vapor and oxygen,the influence of chromium vaporization
Abstract:Abstract

We report on the effect of water vapor and oxygen on the oxidation of a ferritic/martensitic 11 % Cr steel (CrMoV11 1). The influence of pH2O, exposure time, gas velocity and temperature was investigated. The samples were exposed to dry O2, O2+10 or 40 % H2O for up to 336 hours. Total pressure was 1 atm (1.02 × 105 Pa). The gas velocity was between 0.05 and 10 cm/s while temperature was in the range 450–700°C. The samples are investigated by thermogravimetry, GI-XRD, SEM/EDX, GDOES, FIB and TEM/EDX. Oxidation is strongly affected by the vaporization of CrO2(OH)2 in H2O/O2 environment. The mechanism of vaporization of CrO2(OH)2 from a Cr2O3 surface is modelled by DFT calculations. In the absence of chromium vaporization the alloy forms a protective oxide consisting of a corundum-type solid solution (Fe1–xCrx)2O3. The vaporization of chromium tends to deplete the oxide in chromium. In some cases the oxide remains protective in spite of chromium depletion while in other cases there is a transition to breakaway oxidation. In the latter case a thick layered scale forms, consisting of an outer hematite part and an inner iron-chromium spinel. Oxidation behavior in an O2+H2O environment is to a large extent determined by the ability of the metallic substrate to supply the oxide with chromium by diffusion in order to compensate for the losses by vaporization. The corrosivity of the environment increases with the concentration of water vapor and oxygen, with the gas velocity and with temperature.
Keywords:11 % Cr-steel  oxidation  breakaway corrosion  water vapour effect  chromic acid  DFT modelling  chromium vaporization  CrO2(OH)2
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号