首页 | 本学科首页   官方微博 | 高级检索  
     

基于SIFT和改进的RANSAC图像配准算法
引用本文:贾雯晓,张贵仓,汪亮亮,秦 娜. 基于SIFT和改进的RANSAC图像配准算法[J]. 计算机工程与应用, 2018, 54(2): 203-207. DOI: 10.3778/j.issn.1002-8331.1707-0264
作者姓名:贾雯晓  张贵仓  汪亮亮  秦 娜
作者单位:1.西北师范大学 数学与统计学院,兰州 7300702.西北师范大学 计算机科学与工程学院,兰州 730070
摘    要:为解决RANSAC算法迭代次数过多导致图像配准精确率不高的问题,提出了一种改进的RANSAC图像配准算法。首先将参考图像和待配准图像进行NSCT变换分解成低频子带和高频子带。然后对高频子带运用矢量夹角算法和结构相似性(SSIM)来提取图像边缘特征点,对低频子带运用SIFT算法并设定合适的距离阈值来提取特征点。最后利用改进的RANSAC算法提高特征点匹配精度,选择出精匹配点对,实现图像配准。实验结果表明,该算法能有效地找到较多的匹配点对,准确地去除误匹配点对,明显地提高了配准精确度。

关 键 词:尺度不变特征变换(SIFT)  随机抽样一致性(RANSAC)  图像配准  非下采样轮廓波(NSCT)变换  特征点  

Image registration algorithm based on SIFT and improved RANSAC
JIA Wenxiao,ZHANG Guicang,WANG Liangliang,QIN Na. Image registration algorithm based on SIFT and improved RANSAC[J]. Computer Engineering and Applications, 2018, 54(2): 203-207. DOI: 10.3778/j.issn.1002-8331.1707-0264
Authors:JIA Wenxiao  ZHANG Guicang  WANG Liangliang  QIN Na
Affiliation:1.College of Mathematics and Statistics Science, Northwest Normal University, Lanzhou 730070, China2.College of Computer Science and Engineering, Northwest Normal University, Lanzhou 730070, China
Abstract:In order to solve the problem that the accuracy of image registration is not high due to the large number of iterations of RANSAC algorithm, an improved RANSAC image registration algorithm is proposed. First, the reference image and the image to be registered are NSCT transformed into low frequency subband and high frequency subband. Then this paper uses the vector included angle algorithm and Structural Similarity(SSIM) to extract the edge feature points of the high frequency subband, and uses the SIFT algorithm for the low frequency subband and sets the appropriate distance threshold to extract the feature points. Finally, the improved RANSAC algorithm is used to improve the matching of feature points, and the matching points are selected to achieve image registration. The experimental results show that the proposed algorithm can effectively find more pairs of matching points and accurately remove false matching points, which obviously improves the registration accuracy.
Keywords:Scale-Invariant Feature Transform(SIFT)  Random Sample Consensus(RANSAC)  image registration  Nonsubsampled Contourlet(NSCT) transformation  feature point  
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号