首页 | 本学科首页   官方微博 | 高级检索  
     


Dynamic behavior of a tensile crack: finite difference simulation of fracture experiments
Authors:H Stöckl  F Auer
Affiliation:(1) Institut für Meteoroloqie und Geophysik, D-6000 Frankfurt/Main, W. Germany
Abstract:In an idealized fracture model a bilateral brittle tensile crack is assumed to propagate with constant fracture velocity up to its final length. The initial and boundary conditions are plane strain and uniaxial stress perpendicular to the crack surface, which is stress-free. The problem is tackled by solving the elastic wave equation with a finite difference technique. The time function of the displacement at a given point can be interpreted in terms of the arrival of various types of waves, originating from both the initiation and the termination of the fracture. The influence of the fracture velocity is discussed. The model is then modified to allow for a variable fracture velocity and a non-homogeneous prestress field. The results of these calculations are compared with experiments, which were performed with Araldite B. It was found that the finite difference technique can satisfactorily describe the propagation of a crack. The relationship between the fracture velocity and the dynamic stress intensity factor K I is discussed. The critical K I value for crack propagation is K Icap20 to 30 N/mm3/2. The fracture velocity seems to be limited by branching at about 550 m/s, which occurs at K I values K I branchap150 to 250 N/mm3/2.
Résumé On suppose, dans un modèle idéalisé, une rupture fragile soumise à traction et se propageant de manière bilatérale avec une vitesse constante jusqu'à atteindre sa longueur finale. Les conditions initiales et les conditions aux limites sont celles d'un état plan de déformations et d'une tension normale à la surface de la fissure, laquelle est libre de tension. Le problème est attaqué en résolvant léquation d'onde élastique par une technique de différences finies. Le déplacement en fonction du temps d'un point donné peut être interprété comme l'aboutissement de divers types d'ondes, qui prennent naissance à la fois du point d'amorçage et du point d'arrêt de la rupture. On discute l'influence de la vitesse de la rupture, et le modèle subit une modification pour tenir compte d'une vitesse variable et d'un champ de précontrainte non homogène. Les résultats des calculs sont comparés à ceux d'expériences effectuées sur de l'Araldite B. On trouve que la technique des différences finies peut décrire la propagation d'une fissure de manière satisfaisante. On discute la relation entre la vitesse de la rupture et le facteur d'intensité des contraintes dynamiques K I. La valeur critique de K I correspondant à la propagation d'une fissure est K Icsime20 à 30 N/mm3/2. La vitesse de la rupture paraît être limitée par une arborescence qui se produit à environ 550 m/sec et qui correspond à une valeur K I de l'ordre de 150 à 250 N/mm3/2.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号