Effects of Process Conditions on Desalting and Demetalization of Crude Oil |
| |
Authors: | Xinru Xu Jingyi Yang Ying Jiang Jinsheng Gao |
| |
Affiliation: | a Research Institute of Petroleum Processing, East China University of Science & Technology, Shanghai, P. R. China |
| |
Abstract: | The efficiency of desalting for six crude oils was studied with a SY-1 dynamic simulation experimental installation. The demulsifier DC2 was examined for 1#, 2#, and 4# crude oil and DC4 was used for 3#, 5#, and 6# crude oil. The effects of temperature, electric field gradient, dosage of demulsifier, and washing water on the desalting efficiency of six crude oils were investigated. The results showed that at the optimization process condition after desalting, the desalting efficiency and the salt content of 1# crude oil reached 89.17% and 1.92 mg/L; that of 2# crude oil reached 85.08% and 1.04 mg/L; that of 3# crude oil reached 91.06% and 1.35 mg/L; that of 4# crude oil reached 81.67% and 1.51 mg/L; that of 5# crude oil reached 81.03% and 2.32 mg/L; and that of 6# crude oil reached 86.64% and 2.67 mg/L. Different crude oils have different metal contents. Three assistants, ammonium nitrate (TJ1), nitric acid (TJ3), and polyamine carboxylate (TJ4), were used to improve the efficiencies of desalting and demetalization of six crude oils. TJ4 was more efficient in removing calcium and iron for 1# and 2# crude oil. TJ1 was more efficient in desalting and demetalizing 5# crude oil. The efficiencies for removal of calcium, iron, nickel, and vanadium respectively reached 99.89%, 98.33%, 20.58%, and 43.02%. TJ3 has better efficiency desalting and demetalizing for 6# crude oil. With the concentration of TJ3 increasing from 0 to 80 mg/L, the desalting efficiency increases from 31.22% to 73.54%, and the iron removal efficiency increases from 56.0% to 74.05%. |
| |
Keywords: | desalting demetalization crude oil demulsification dynamic simulation equipment |
本文献已被 InformaWorld 等数据库收录! |
|