首页 | 本学科首页   官方微博 | 高级检索  
     


Thermal accommodation coefficient of gases on controlled solid surfaces: Argon-tungsten system
Authors:S C Saxena  R Afshar
Affiliation:(1) Department of Chemical Engineering, University of Illinois at Chicago, Box 4348, 60680 Chicago, Illinois, USA
Abstract:The knowledge of the thermal accommodation coefficient for gases on well-controlled surfaces as a function of temperature is imperative to understanding the mechanism of interphase heat transfer on the microscopic level. With this goal in view, a heat transfer column instrument is designed, fabricated, assembled, and tested for the specific case a argon—tungsten system. With 99.9999%, pure argon, six sets of data are taken in the rarefied gas region in the maximum temperature range of 500–1500 K. Four sets of these measurements are in the temperature-jump region and are analyzed by the constant-power method to compute the thermal accommodation coefficient of argon on a controlled tungsten surface. The other two sets are taken under free-molecular flow conditions and are interpreted in accordance with the man-free-path kinetic theory for the low-pressure regime. These data are compared and discussed in the context of reported data in the literature and interpreted in the light of the surface condition and finish of the tungsten wire.Nomenclature A area of the solid surface - C j constants in Eq. (3); j=0, 1, 2, 3, and 4 - E i incident energy flux - E r reflected energy flux - E s reflected energy flux when the interaction between the gas and the solid atoms is complete - g temperature-jump distance - L half-length of the metal wire - M molecular weight of the gas - P gas pressure - Q H total thermal energy conducted by the gas per unit time from the hot surface - QKT total thermal energy conducted by the gas per unit time if the striking gas molecules were to attain thermal equilibrium with the hot surface - R molar gas constant - r radial coordinate - r f radius of the hot wire - S sticking coefficient - So initial sticking coefficient - T temperature - T e linearly extrapolated gas temperature on the hot-wire surface - T g temperature of the impinging gas molecules - T H temperature of the hot surface - T i temperature of the incident gas stream - T r temperature of the gas molecules receding after collision with the solid surface - T s temperature of the solid surface Greek Symbols agr thermal accommodation coefficient for the gas—solid surface - rgr resistivity of the metal wire - theta gas coverage on the solid surface For an explanation of symbols, see Nomenclature.
Keywords:argon gas  thermal accomodation coefficient  tungsten surface
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号