首页 | 本学科首页   官方微博 | 高级检索  
     


Permeation of gases through modified polymer films. I. Polyethylene–styrene graft copolymers
Authors:R Y M Huang  P J F Kanitz
Abstract:The permeabilities of nitrogen, oxygen, and carbon dioxide through polyethylene–styrene graft copolymer films were measured by means of a gas permeability apparatus based on a modification of Barrer's high vacuum technique. Polyethylene–styrene grafts were prepared by mutual γ-ray irradiation of low-density polyethylene films in styrene–methanol solution. Densities and thicknesses of the graft copolymer films were determined. It was observed that the gas permeability constants decreased with increasing grafting to minimum values at 20–30% styrene grafting and increased again above 30% grafting. These results are explained in terms of a decrease in the free volume of the amorphous regions of the polyethylene by a “filling in” effect of the grafted polystyrene chains. Above 30% grafting, disruption of the crystallites may occur resulting in increased gas permeation. Activation energies for gas permeation through polyethylene–styrene graft copolymer films were calculated and found to decrease with increasing per cent styrene grafting. For nitrogen permeation, the activation energy decreased from 11.7 kcal/mole for unirradiated polyethylene to 9.5 kcal/mole for a 50.5% graft. Corresponding values for oxygen and carbon dioxide were 10.2–8.2 kcal/mole for a 48.7% graft and 8.4–6.5 kcal/mole for a 50.5% graft.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号