首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of intravenous general anesthetics on [3H]GABA release from rat cortical synaptosomes
Authors:KD Murugaiah  HC Hemmings
Affiliation:Department of Anesthesiology, Cornell University Medical College, New York, New York 10021, USA.
Abstract:BACKGROUND: Potentiation by general anesthetics of gamma-aminobutyric acid (GABA)-mediated inhibitory transmission in the central nervous system is attributed to GABA(A) receptor-mediated postsynaptic effects. However, the role of presynaptic mechanisms in general anesthetic action is not well characterized, and evidence for anesthetic effects on GABA release is controversial. The effects of several intravenous general anesthetics on 3H]GABA release from rat cerebrocortical synaptosomes (isolated nerve terminals) were investigated. METHODS: Purified synaptosomes were preloaded with 3H]GABA and superfused with buffer containing aminooxyacetic acid and nipecotic acid to inhibit GABA metabolism and reuptake, respectively. Spontaneous and elevated potassium chloride depolarization-evoked 3H]GABA release were evaluated in the superfusate in the absence or presence of various anesthetics, extracellular Ca2+, GABA receptor agonists and antagonists, and 2,4-diaminobutyric acid. RESULTS: Propofol, etomidate, pentobarbital, and alphaxalone, but not ketamine, potentiated potassium chloride-evoked 3H]GABA release (by 1.3 to 2.9 times) in a concentration-dependent manner, with median effective concentration values of 5.4 +/- 2.8 microM (mean +/- SEM), 10.1 +/- 2.1 microM, 18.8 +/- 5.8 microM, and 4.4 +/- 2.0 microM. Propofol also increased spontaneous 3H]GABA release by 1.7 times (median effective concentration = 7.1 +/- 3.4 microM). Propofol facilitation of 3H]GABA release was Ca2+ dependent and inhibited by bicuculline and picrotoxin, but was insensitive to pretreatment with 2,4-diaminobutyric acid, which depletes cytoplasmic GABA pools. CONCLUSIONS: Low concentrations of propofol, etomidate, pentobarbital, and alphaxalone facilitated 3H]GABA release from cortical nerve terminals. General anesthetics may facilitate inhibitory GABA-ergic synaptic transmission by a presynaptic mechanism in addition to their well-known postsynaptic actions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号