首页 | 本学科首页   官方微博 | 高级检索  
     

基于独立分量分析和遗传算法的图象分离方法研究与实现
引用本文:杨俊安,庄镇泉,钟子发,郭立. 基于独立分量分析和遗传算法的图象分离方法研究与实现[J]. 中国图象图形学报, 2003, 8(4): 441-446
作者姓名:杨俊安  庄镇泉  钟子发  郭立
作者单位:[1]中国科学技术大学电子科学与技术系,合肥230026 [2]解放军电子工程学院204研究室,合肥230037
基金项目:教育部博士点专项基金(1999035808)
摘    要:在深入分析独立分量分析技术的基础上,针对常规数值求解方法容易陷入局部最优解的问题,提出了一种基于遗传算法和独立分量分析相结合的盲源分离新算法.通过对图象信号分离仿真试验表明,采用最佳保留机制和移民方式的动态补充子代个体操作,在一定的群体规模和遗传代数的情况下,该方法能实现信号的盲分离,并可获得全局最优解.对超高斯信号和亚高斯信号的混合信号,与扩展信息最大化方法相比,该方法可获得更好的分离效果。

关 键 词:图象分离 独立分量分析 遗传算法 信号处理 峭度 全局优化算法 仿真实验 性能评估
文章编号:1006-8961(2003)04-0441-06
修稿时间:2002-04-19

Research & Realization of Image Separation Method Based on Independent Component Analysis & Genetic Algorithm
YANG Jun-an,ZHUANG Zhen-quan,ZHONG Zi-fa and GUO Li. Research & Realization of Image Separation Method Based on Independent Component Analysis & Genetic Algorithm[J]. Journal of Image and Graphics, 2003, 8(4): 441-446
Authors:YANG Jun-an  ZHUANG Zhen-quan  ZHONG Zi-fa  GUO Li
Abstract:A novel Blind Source Separation(BSS) algorithm based on the combination of genetic algorithm andIndependent Component Analysis (ICA) is proposed with analysis to the ICA method. The proposed algorithm can be used to solve the problem of local optimum that is easily stacked into by normal numerical solution. In the genetic algorithm, the Kurtosis as the fitness function is adopted, the elitist model is introduced and supplying filial generation's individual with migrant operation dynamically is also adopted. The simulation 1 is the separation of the mixed signals of three images and a noise. The simulation 2 is the separation of the mixed signals of two image signals (sub-gauss signal) and two voice signals (super-gauss signal). The image separation simulation shows that the blind signals separation can be realized and the global optimum can be acquired through the proposed algorithm under the circumstance of adequate population size and genetic generations. Compared with the Blind Source Separation method of extended-infomax, the proposed method in this paper can acquire better separating effect in separating the mixed signals of sub-gauss signal and super-gauss signal.
Keywords:Computer image processing  Independent component analysis  Genetic algorithm  Kurtosis  Blindsource separation
本文献已被 维普 等数据库收录!
点击此处可从《中国图象图形学报》浏览原始摘要信息
点击此处可从《中国图象图形学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号