首页 | 本学科首页   官方微博 | 高级检索  
     

基于CEGA-SVM的网络入侵检测算法
引用本文:赵军. 基于CEGA-SVM的网络入侵检测算法[J]. 计算机工程, 2009, 35(23): 166-167
作者姓名:赵军
作者单位:江苏食品职业技术学院计算机应用技术系,淮安,223004
摘    要:针对传统遗传算法在网络入侵检测中存在分类复杂的问题,提出结合条件熵遗传算法(CEGA)和支持向量机(SVM)的网络入侵检测算法。将入侵特征的抽取和分类模型的建立进行联合优化,同时利用训练数据的统计特性指导入侵特征的抽取,并对特征空间进行线性变换,得到优化的特征子集和分类模型,在提高分类检测率的同时降低检测时延。

关 键 词:入侵检测  遗传算法  支持向量机
修稿时间: 

Network Intrusion Detection Algorithm Based on CEGA-SVM
ZHAO Jun. Network Intrusion Detection Algorithm Based on CEGA-SVM[J]. Computer Engineering, 2009, 35(23): 166-167
Authors:ZHAO Jun
Affiliation:(Department of Computer Applied Technology, Jiangsu Food Science College, Huai’an 223004)
Abstract:Due to the complex classification problems from the traditional genetic algorithm in the process of network intrusion detection , this paper proposes the network intrusion detection algorithm combined Conditional Entropy Genetic Algorithm(CEGA) and the Support Vector Machine (SVM). To optimize jointly the invasion of feature extraction and classification model, while taking advantage of the statistical characteristics of training data to guide the invasion feature extraction, and according to the feature space linear transformation to obtain the optimal feature subset and the classification model, as improving the classification test rates, the detection latency is reduced.
Keywords:intrusion detection  genetic algorithm  Support Vector Machine(SVM)
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机工程》浏览原始摘要信息
点击此处可从《计算机工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号