首页 | 本学科首页   官方微博 | 高级检索  
     

基于语言结构和情感极性的虚假评论识别
引用本文:任亚峰,尹兰,姬东鸿. 基于语言结构和情感极性的虚假评论识别[J]. 计算机科学与探索, 2014, 0(3): 313-320
作者姓名:任亚峰  尹兰  姬东鸿
作者单位:武汉大学计算机学院,武汉430072
基金项目:The Key Program of National Natural Science Foundation of China under Grant No. 61133012 (国家自然科学基金重点项目); the National Natural Science Foundation of China under Grant No. 61173062 (国家自然科学基金); the Fundamental Research Funds for the Central Universities of China under Grant No. 2012211020210 (中央高校基本科研业务费专项资金).
摘    要:随着电子商务的发展,识别网络中的虚假评论意义重大。传统的启发式策略或全监督学习算法不能有效地解决该问题。虚假评论与真实评论在语言结构和情感极性上存在差异,提出基于遗传算法对语言结构及情感极性特征进行优化选择,并利用选取的特征结合无监督硬、软聚类算法对虚假评论进行识别。实验结果验证了所提算法的有效性。

关 键 词:虚假评论  聚类  语言结构  情感极性  遗传算法

Deceptive Reviews Detection Based on Language Structure and Sentiment Polarity
REN Yafeng,YIN Lan,JI Donghong. Deceptive Reviews Detection Based on Language Structure and Sentiment Polarity[J]. Journal of Frontier of Computer Science and Technology, 2014, 0(3): 313-320
Authors:REN Yafeng  YIN Lan  JI Donghong
Affiliation:( Computer School, Wuhan University, Wuhan 430072, China)
Abstract:With the development of electronic commerce, assessing the trustworthiness of reviews is becoming a key issue. Heuristic strategies or traditional supervised learning methods cannot effectively solve this task. There must be some differences on language structure and sentiment polarity between deceptive reviews and truthful ones. This paper defines the features related to the review text and uses genetic algorithm for the features selection of lan- guage structure and sentiment polarity. Then, this paper uses the selected features and combines two non-supervision clustering algorithms to identify deceptive reviews. The experimental results verify the effectiveness of the proposed methods.
Keywords:deceptive reviews  clustering  language structure  sentiment polarity  genetic algorithm
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号