首页 | 本学科首页   官方微博 | 高级检索  
     


Charge Transport in Polycrystalline Graphene: Challenges and Opportunities
Authors:Van Luan Nguyen  Dinh Van Tuan  Jani Kotakoski  Jose Eduardo Barrios Vargas  Young Hee Lee  Stephan Roche
Affiliation:1. IBS Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, Suwon, Korea;2. Department of Energy Science, Department of Physics, Sungkyunkwan University, Suwon, Korea;3. ICN2 – Institut Català de Nanociència i Nanotecnologia, Bellaterra, Barcelona, Spain;4. Department of Physics, Universitat Autónoma de Barcelona, Campus, Bellaterra, Spain;5. Department of Physics, University of Helsinki, University of Helsinki, Finland;6. Faculty of Physics, University of Vienna, Wien, Austria;7. ICREA – Institució Catalana de Recerca i Estudis Avan?ats, Barcelona, Spain
Abstract:Graphene has attracted significant interest both for exploring fundamental science and for a wide range of technological applications. Chemical vapor deposition (CVD) is currently the only working approach to grow graphene at wafer scale, which is required for industrial applications. Unfortunately, CVD graphene is intrinsically polycrystalline, with pristine graphene grains stitched together by disordered grain boundaries, which can be either a blessing or a curse. On the one hand, grain boundaries are expected to degrade the electrical and mechanical properties of polycrystalline graphene, rendering the material undesirable for many applications. On the other hand, they exhibit an increased chemical reactivity, suggesting their potential application to sensing or as templates for synthesis of one‐dimensional materials. Therefore, it is important to gain a deeper understanding of the structure and properties of graphene grain boundaries. Here, we review experimental progress on identification and electrical and chemical characterization of graphene grain boundaries. We use numerical simulations and transport measurements to demonstrate that electrical properties and chemical modification of graphene grain boundaries are strongly correlated. This not only provides guidelines for the improvement of graphene devices, but also opens a new research area of engineering graphene grain boundaries for highly sensitive electro‐biochemical devices.
Keywords:graphene  grain boundaries  charge transport  scaling law  functionalization
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号