首页 | 本学科首页   官方微博 | 高级检索  
     


Modelling and parameter estimation of ultra-dispersed in situ catalytic upgrading experiments in a batch reactor
Authors:Hassan Hassanzadeh
Affiliation:Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, Canada T2N 1N4
Abstract:In situ catalytic upgrading of heavy oil and bitumen has been suggested and tested in the laboratory for utilization of heavy oil resources. Experimental observations have demonstrated potential, so this innovative recovery technique may have a role in the development of large resources of heavy oil and bitumen. Accurate analytical and numerical modelling is necessary in order to correctly interpret experimental measurements of the in situ upgrading, leading to a better understanding and design of field-scale processes. In this paper, we present modelling and parameter estimation for ultra-dispersed catalytic upgrading experiments conducted in a batch reactor. The Monte Carlo simulation technique was used to estimate the most appropriate reaction parameters. The combination of an analytical batch reactor model and the Monte Carlo simulation technique allows for the fast generation of a large number of upgrading experiment realizations. Comparisons of analytical modelling results with the experimental measurements of the upgrading experiments at different temperatures are in close agreement. Results reveal that ultra-dispersed catalytic upgrading in a batch reactor results in a fairly high residue conversion and can potentially increase the API gravity of the produced oil.
Keywords:In situ upgrading  Ultra-dispersed catalyst  Bitumen  Heavy oil  Parameter estimation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号