首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
一种基于改进ResNet的疲劳检测方法
作者姓名:
王家曜
马亮亮
王飞
赵德京
作者单位:
1. 青岛大学自动化学院;2. 山东省工业控制重点实验室;3. 哈尔滨工程大学烟台研究院;4. 山东潍坊烟草有限公司
基金项目:
国家自然科学基金项目(61903209);
摘 要:
为了避免因疲劳驾驶导致的交通事故的发生,该文提出一种基于改进ResNet网络的疲劳检测方法。通过在残差模块中引入深度卷积,对标准化方法进行优化并引入平均池化和注意机制,有效提升了模型对脑电信号全局信息的捕捉能力。通过SEED-VIG的功率谱特征和微分熵特征数据集、多熵融合疲劳检测数据集和SPIS静息状态数据集对该文模型进行验证。实验结果表明,该文模型在各数据集上的平均准确率达到97.4%,较原ResNet网络提升17.9%。此模型对疲劳检测十分有效,可在一定程度上降低交通事故发生率。
关 键 词:
疲劳驾驶
脑电信号
深度学习
ResNet网络
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号