首页 | 本学科首页   官方微博 | 高级检索  
     

简谐激励力作用下悬垂缆线的谐波共振
引用本文:肖锡武,肖光华,Jacques DRUEZ. 简谐激励力作用下悬垂缆线的谐波共振[J]. 振动与冲击, 2003, 22(4): 62-65
作者姓名:肖锡武  肖光华  Jacques DRUEZ
作者单位:1. 华中科技大学力学系,武汉,430074
2. Department of Applied Sciences,Quebec University at Chicoutimi,G7H 2B1,Canada
基金项目:加拿大自然科学及工程研究基金,华中科技大学科学研究基金资助项目
摘    要:本文研究在简谐激励力作用下的悬垂缆线的谐波共振。用Hamilton原理导出悬垂缆线面内运动的非线性偏微分方程。通过假设悬垂缆线的挠度曲线,运用Galerkin方法将偏微分方程转化为常微分方程。用多尺度法研究悬垂缆线的超谐波共振和次谐波共振,得到了系统的定常周期解,平均方程和幅频曲线。研究了非线性对幅频曲线的影响和定常运动的稳定区域。

关 键 词:简谐激励力 悬垂缆线 谐波共振 Hamilton原理 微分方程 挠度 多尺度法
修稿时间:2002-01-25

Harmonic Resonances of a Suspended Cable Under Harmonic Excitation
Jacques DRUEZ. Harmonic Resonances of a Suspended Cable Under Harmonic Excitation[J]. Journal of Vibration and Shock, 2003, 22(4): 62-65
Authors:Jacques DRUEZ
Abstract:In the paper,the harmonic resonances of a suspended cable with initial sag under the harmonic excitation in vertical plane are considered.Using the Hamilton's principle,the nonlinear partial differential equations of the planar motion of the suspended cable are derived.The partial differential equation of planar motion is reduced to one ordinary differential equation via the Galerkin procedure by assuming a modal deflection shape. By applying the method of multiple scales,the superharmonic resonance and subharmonic resonance and stability of the suspended cable are studied.The approximate constant periodic solution,the averaged equations and the response curves of amplitude-frequency are obtained. This study shows that the effect of the nonlinearity is to bend the amplitude curve,form multivalued regions and lead to jump phenomena.This study also shows that the nonlinearity may produce the superharmonic resonance and subharmonic resonance.Although the frequency of the excitation is not equal to the nature frequency of system the response of the system is quite large.
Keywords:suspended cable  harmonic resonance  response of amplitude-frequency  stability  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号