首页 | 本学科首页   官方微博 | 高级检索  
     

从空间数据库发现聚类:一种基于数学形态学的算法
引用本文:邸凯昌,李德仁,李德毅. 从空间数据库发现聚类:一种基于数学形态学的算法[J]. 中国图象图形学报, 1998, 3(3): 173-178
作者姓名:邸凯昌  李德仁  李德毅
作者单位:武汉测绘科技大学,总参谋部第六十一研究所
摘    要:聚类算法能从空间数据库中直接发现一些有意义的聚类结构而不需要背景知识,是空间数据发掘和知识发现的重要手段。在分析已有聚类算法的基础上,提出了一种基于数学形态学的聚类算法,该算法能够处理任意形状的聚类,采用启发式方法自动确定最优聚类数。同时,该算法也可以在矢量型空间数据库中得到实现。试验表明算法是可行和有效的,且能处理存在噪音的数据。

关 键 词:聚类算法,数学形态学,数据发掘与知识发现,空间数据库

A Mathematical Morphology Based Algorithm for Discovering Clusters in Spatial Databases
Di Kaichang,Li Deren and Li Deyi. A Mathematical Morphology Based Algorithm for Discovering Clusters in Spatial Databases[J]. Journal of Image and Graphics, 1998, 3(3): 173-178
Authors:Di Kaichang  Li Deren  Li Deyi
Abstract:Cluster analysis is an important technique for data mining and knowledge discovery in spatial databases. Its main advantage is the ability to find interesting structures or clusters directly form the spatial data without using any background knowledge. Some available algorithms are reviewed and a mathematical morphology based clustering algorithm (MMC) is presented in this paper. Clusters with arbitrary shape can be discovered by using MMC algorithm, and the optimal cluster number is automatically determined by a heuristic method. The algorithm can be implemented in vector databases as well as in raster databases. The experiments show that the new algorithm is feasible and effective for discovering clusters in spatial databases and is robust when clustering in databases with noise.
Keywords:Clustering algorithm   Mathematical morphology   Data mining and knowledge discovery   Spatial database
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《中国图象图形学报》浏览原始摘要信息
点击此处可从《中国图象图形学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号