首页 | 本学科首页   官方微博 | 高级检索  
     

轴向激励屈曲简支梁混沌运动特性
引用本文:陈宁,范存新,谢小明. 轴向激励屈曲简支梁混沌运动特性[J]. 苏州科技学院学报(工程技术版), 2001, 14(4): 60-65
作者姓名:陈宁  范存新  谢小明
作者单位:1. 南京林业大学,机械学院,江苏,南京,210037
2. 苏州科技学院,城建系,江苏,苏州,215011
基金项目:苏州城建环保学院青年教师科研基金资助项目
摘    要:文章利用有限差分原理对轴向激励作用下屈曲梁的动力特性进行数值研究,并考虑了梁转动惯量的影响.其计算结果与利用Galerkiin法将偏微分方程转化成常微分方程进行分析研究结果基本吻合,证实系统中存在周期倍化、拟周期运动和混沌运动等复杂动力学行为,结果也表明该方法具有良好的精确性和收敛性.

关 键 词:参激屈曲梁  非线性动力学  混沌运动  周期倍化
文章编号:1004-8022(2001)04-0060-06
修稿时间:2001-09-02

Chaotic Behavior of a Simply-supported Buckled Beam Under Axial Harmonic Excitation
CHEN Ning,FAN Cun-xin,XIE Xiao-ming. Chaotic Behavior of a Simply-supported Buckled Beam Under Axial Harmonic Excitation[J]. Journal of University of Science and Technology of Suzhou:Engineering and Technology, 2001, 14(4): 60-65
Authors:CHEN Ning  FAN Cun-xin  XIE Xiao-ming
Affiliation:CHEN Ning 1,FAN Cun-xin 2,XIE Xiao-ming 2
Abstract:The dynamical behavior of a simply-support buckled beam under axial harmonic exci-tation is investigated by using the direct numerical method and the effect of rotary inertia is con-sidered,too.The governed equation of buckled beam is transformed to the nonlinear partial differ-ential equations of physical variables such as moment ,velocity and displacement.By using a sta-ble,explicit finite difference scheme to solve the equations,the solutions are equivalent to the Galerkin solutions.Various complex dynamical behavior such as period doubling,quasi-periodic and chaotic motion in this system are shown,and the result also demonstrates that the finite dif-ference method is more convenient than other tradition methods to study buckled beam.
Keywords:parametric exciting buckled beam  nonlinear dynamics  chaotic motion  period dou-bling  
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号