首页 | 本学科首页   官方微博 | 高级检索  
     


Composite-to-metal tubular lap joints: strength and fatigue resistance
Authors:E D Reedy Jr  T R Guess
Affiliation:(1) Sandia National Laboratories, 87185 Albuquerque, New Mexico, USA
Abstract:The axial strength and fatigue resistance of thick-walled, adhesively bonded E-glass composite-to-aluminum tubular lap joints have been measured for tensile and compressive loadings. The joint specimen bonds a 63 mm OD aluminium tube within each end of a 300 mm long, 6 mm thick E-glass/epoxy tube. Untapered, 12.5 mm thick aluminium adherends were used in all but four of the joint specimens. The aluminum adherends in the remaining four specimens were tapered to a thickness of 1 mm at the inner bond end (the bond end where the aluminum adherend terminates). For all loadings, joint failure initiates at the inner bond end as a crack grows in the adhesive adjacent to the interface. Test results for a tension-tension fatigue loading indicate that fatigue can severely degrade joint performance. Interestingly, measured tensile strength and fatigue resistance for joints with untapered adherends is substantially greater than compressive strength and fatigue resistance.The joint specimen has been analyzed in two different ways: one approach models the adhesive as an uncracked, elastic-perfectly plastic material, while the other approach uses a linear elastic fracture mechanics methodology. Results for the uncracked, elastic-plastic adhesive model indicate that observed bond failure occurs in the region of highest calculated stresses, extensive bond yielding occurs at load levels well below that required to fail the joint, and a tensile peel stress is generated by a compressive joint loading when the aluminum adherends are untapered. This latter result is consistent with the observed joint tensile-compressive strength differential. Results of the linear elastic fracture mechanics analysis of a joint with untapered aluminum adherends are also consistent with the observed differential strength effect since a mode I crack loading is predicted for a compressive joint loading. Calculations and a limited number of tests suggest that it may be possible to selectively control the differential strength effect by tapering the aluminum adherends. The effect of adherend material and thickness on fracture mechanics parameters is also investigated. The paper concludes by examining the applicability of linear elastic fracture mechanics to the joints tested.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号