首页 | 本学科首页   官方微博 | 高级检索  
     


Improved CO2 Capture from Flue Gas by Basic Sites,Charge Gradients,and Missing Linker Defects on Nickel Face Cubic Centered MOFs
Authors:Elena López‐Maya  Carmen Montoro  Valentina Colombo  Elisa Barea  Jorge A R Navarro
Affiliation:1. Universidad de Granada, Departamento de Química Inorgánica, Granada, Spain;2. Università di Milano, Dipartimento di Chimica, Milano, Italy
Abstract:The adsorptive properties of the isoreticular series Ni8(OH)4(H2O)2(BDP_X)6] (H2BDP_X = 1,4‐bis(pyrazol‐4‐yl)benzene‐4‐X with X = H (1), OH (2), NH2 (3)) can be enhanced by postsynthetic treatment with an excess of KOH in ethanol. In the case of X = H, NH2, this treatment leads to partial removal of the organic linkers, deprotonation of coordinated water molecules and introduction of extraframework cations, giving rise to materials of KNi8(OH)5(EtO)‐(H2O)2(BDP_X)5.5] (1@KOH, 3@KOH) formulation, in which the original framework topology is maintained. By contrast, the same treatment with KOH in the Ni8(OH)4(H2O)2(BDP_OH)6] (2) system, enclosing the more acidic phenol residues, leads to a new material containing a larger fraction of missing linker defects and extra‐framework cations as well as phenolate residues, giving rise to the material K3Ni8(OH)3(EtO)(H2O)6(BDP_O)5] (2@KOH), which also conserves the original face cubic centered (fcu) topology. It is noteworthy that the introduction of missing linker defects leads to a higher accessible pore volume with a concomitant increased adsorption capacity. Moreover, the creation of coordinatively unsaturated metal centers, charge gradients, and phenolate nucleophilic sites in 2@KOH gives rise to a boosting of CO2 capture features with increased adsorption heat and adsorption capacity, as proven by the measurement of pulse gas chromatography and breakthrough curve measurements of simulated flue gas.
Keywords:metal‐organic frameworks  carbon capture  gas separation  zeomimetic  green house gases
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号