首页 | 本学科首页   官方微博 | 高级检索  
     


Investigation of CL‐20 and RDX Nanocomposites
Authors:Rajen B Patel  Victor Stepanov  Sean Swaszek  Ashok Surapaneni  Hongwei Qiu
Abstract:Nanocrystalline explosives offer a number of advantages in comparison to conventional energetics including reduced sensitivity and improved mechanical properties. In this study, formulations consisting of 90 % hexanitro‐hexaazaisowurtzitane (CL‐20) or cyclotrimethylene trinitramine (RDX) and 10 % polyvinyl alcohol (PVOH) were prepared with mean crystal sizes ranging from 200 nm to 2 μm. The process to create these materials used a combination of aqueous mechanical crystal size reduction and spray drying. The basic physical characteristics of these formulations were determined using a variety of techniques, including scanning electron microscopy, X‐ray diffraction, and Raman spectroscopy. Compressive stress‐strain tests on pressed pellets revealed that the mechanical properties of the compositions improved with decreasing crystal size, consistent with Hall‐Petch mechanics. In the most extreme case (involving CL‐20/PVOH formulations), crystal size reduction from 2 μm to 300 nm improved compressive strength and Young’s modulus by 126 % and 61 %, respectively. These results serve to highlight the relevance of structure‐property relationships in explosive compositions, and particularly elucidate the substantial benefits of reducing the high explosive crystal size to nanoscale dimensions.
Keywords:Nitramine  Explosives  Nanoenergetic  Spray drying  Sensitivity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号