首页 | 本学科首页   官方微博 | 高级检索  
     


Wrapping carbon nanotubes by biopolymer chains: Role of nanointerfaces in detection of vapors in conductive polymer composite transducers
Authors:Payam Molla‐Abbasi  Seyed Reza Ghaffarian  Erfan Dashtimoghadam
Abstract:Chitosan (CS) and hydrophobic‐modified chitosan (HM‐CS) chains were wrapped onto multiwalled carbon nanotubes (MWNTs) and introduced to polyvinyl alcohol (PVA) matrices as nanohybrid conductive polymer composites (CPCs) for detection of polar vapors. The effect of grafted alkyl groups on polarity of CS chains were studied by quantum mechanics (QM). The designed composites were applied as sensitive layers to clarify the response mechanism in CPCs gas sensors. It was realized that the wrapped biopolymers intensely influenced the sensitivity of the composites. Experiment results specified that the nature of biomacromolecules and their interactions with vapor molecules affects the resistance change in CPCs. The higher interaction of CS with polar vapor molecules caused more plasticization of polymer segments in the MWNTs connections. Such phenomenon enhanced the resistance change in the presence of analytes. Moreover, it was inferred that the semiconductor character of MWNTs has an important effect in the final signals. The more polar structure of CS in comparison with HM‐CS enhanced the adsorption of vapor molecules on the surface of MWNTs, and the electron donor analytes decreased the conductivity of p‐type MWNTs increasing the final responses. The presented results corroborate that the performance of CPCs gas sensors could be finely tuned through manipulation of the nanointerfaces. POLYM. COMPOS., 37:2803–2810, 2016. © 2015 Society of Plastics Engineers
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号