首页 | 本学科首页   官方微博 | 高级检索  
     


Simultaneous ultrasonication‐assisted internal mixing to prepare MWCNTs‐filled epoxy composites with increased strength and thermal conductivity
Authors:Jin Sha  Guo Li  Xin Chen  Ping Xia  Riping Luo  Shanshan Yang  Tao Chen  Yulu Ma  Linsheng Xie
Abstract:The uniform dispersion of carbon nanotubes in epoxy resin is one of the key factors to achieve the composites with desirable mechanical and physical property enforcement. However, the widely used dispersion methods have their own respective limitations in pursuing satisfactory nanotube dispersion. Herein, a new dispersion approach, based on the synergetic effect of combining high speed internal mixing with running simultaneously continuous ultrasonication treatment, has been proposed. The dispersion of nanotubes was carried out in a high speed internal mixer, consisting of twin kneading block structured rotors and an integrated ultrasonic horn, which was intercalated into the central position between the twin rotors. At first, the FEM simulation was conducted to optimize the kneading element assembly and illuminate the geometry influence of the ultrasonic horn intercalation on the mixing flow. Afterwards, to confirm the feasibility of the approach, pristine MWCNTs (P‐CNTs), oxidation modified MWCNTs (M‐CNTs) and M‐CNTs/multilayer graphene nanoplatelets (MGPs) hybrid are dispersed into epoxy resin. The dispersion of each sample in its liquid epoxy state is investigated under transparent optical microscopy. More characterizations, including SEM, TG/DTA, tensile test, and thermal conductivity measurements, were conducted on the cured composites. Competitive reinforcements on mechanical tensile property and thermal conductivity were observed. Especially, at a 1.5 wt% M‐CNTs/MGPs hybrid content, the composite mechanical tensile strength and thermal conductivity were 47% and 30% higher than those of neat epoxy. This preliminary study demonstrates the feasibility and practicability of the proposed approach to achieving good MWCNTs dispersion and distribution in epoxy resin. POLYM. COMPOS., 37:870–880, 2016. © 2014 Society of Plastics Engineers
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号