首页 | 本学科首页   官方微博 | 高级检索  
     


Catalytic Effect of Two Shapes of Nano‐Fe2O3 on Hexanitrohexaazaisowurtzitane Using a Non‐Isothermal Decomposition Kinetic Method
Authors:Rong Gao  Ningning Zhao  Jianbing Liu  Ting Zhang  Haixia Ma
Abstract:Nanosized Fe2O3 particles (nano‐Fe2O3) with two shapes (tetrakaidecahedral and grainy) were synthesized by hydrothermal methods. The morphologies and structures were characterized using a combination of experimental techniques including X‐ray diffraction (XRD) and scanning electron microscopy (SEM). Two composites containing CL‐20 (hexanitrohexaazaisowurtzitane, HNIW) and tetrakaidecahedral nano‐Fe2O3 nmT‐Fe2O3/CL‐20] or grainy nano‐Fe2O3/CL‐20 (nmG‐Fe2O3/CL‐20) were prepared. The thermal behaviors of the two composites and pure CL‐20 were investigated using differential scanning calorimetry (DSC). Non‐isothermal decomposition kinetic parameters and the thermal decomposition mechanism of the two composites and CL‐20 were obtained. The apparent activation energy (Ea) of the main thermal decomposition reaction of CL‐20, nmT‐Fe2O3/CL‐20 and nmG‐Fe2O3/CL‐20 are 181.94, 179.17, and 176.18 kJ mol−1, respectively. The thermal decomposition mechanism of CL‐20 as well as nmT‐Fe2O3/CL‐20 was controlled by the Avrami‐Erofeev equation (n=2/5) assumed as random nucleation and subsequent growth, while, the reaction mechanism of the composite nmG‐Fe2O3/CL‐20 was controlled by the Mample Power law (n=1/2). The reason for this difference may be due to the different morphology and particle size of the two nano‐Fe2O3 particles.
Keywords:Nano-Fe2O3  Hydrothermal method  Thermal decomposition mechanism
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号