首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical Model for Channel Flow and Morphological Change Studies
Authors:Yafei Jia  Sam S Y Wang
Affiliation:1Affiliate, ASCE
2Fellow, ASCE
Abstract:In this paper a depth-integrated 2D hydrodynamic and sediment transport model, CCHE2D, is presented. It can be used to study steady and unsteady free surface flow, sediment transport, and morphological processes in natural rivers. The efficient element method is applied to discretize the governing equations, and the time marching technique is used for temporal variations. The moving boundaries were treated by locating the wet and dry nodes automatically in the cases of simulating unsteady flows with changing free surface elevation in channels with irregular bed and bank topography. Two eddy viscosity models, a depth-averaged parabolic model and a depth-averaged mixing length model, are used as turbulent closures. Channel morphological changes are computed with considerations of the effects of bed slope and the secondary flow in curved channels. Physical model data have been used to verify this model with satisfactory results. The feasibility studies of simulating morphological formation in meandering channels and flows in natural streams with in-stream structures have been conducted to demonstrate its applicability to hydraulic engineering research∕design studies of stream stabilization and ecological quality among other problems.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号