首页 | 本学科首页   官方微博 | 高级检索  
     

少缺陷样本的PCB焊点智能检测方法
引用本文:卢盛林,张宪民. 少缺陷样本的PCB焊点智能检测方法[J]. 焊接学报, 2009, 30(5): 57-60
作者姓名:卢盛林  张宪民
作者单位:东莞理工学院,机械工程学院,广东,东莞,523106;华南理工大学,机械与汽车工程学院,广州,510640
基金项目:国家杰出青年科学基金 
摘    要:随着印刷电路板组装技术向高密度化和"零缺陷"方向发展,市场对自动光学检测系统的要求也向高准确率、智能化发展.而传统自动光学检测系统的检测算法不仅需要进行复杂的设置,而且需要大量不同类型的样本进行训练以提高系统的泛化性能,但在电路板组装过程中,有缺陷的样本难以获得.针对此类问题,提出了一种适应少缺陷样本的智能检测方法.首先对焊点图像的一系列特征进行了提取;然后介绍了一种基于统计方法的自动阈值设置方法;最后建立了用于进行焊点分类的BP神经网络.结果表明,方法具有较高的准确率.

关 键 词:焊点  神经网络  机器视觉  检测
收稿时间:2008-01-04

Intelligent inspection of soldered joint based on artificial neuron network
LU Shenglin and Zhang Xianmin. Intelligent inspection of soldered joint based on artificial neuron network[J]. Transactions of The China Welding Institution, 2009, 30(5): 57-60
Authors:LU Shenglin and Zhang Xianmin
Affiliation:1.School of Mechanical Engineering;Dongguan University of Technology;Dongguan 523106;Guangdong;China;2.School of Mechanical Engineering;South China University of Technology;Guangzhou 510640;China
Abstract:As electronic components get smaller and the board densities become more compact,it is necessary for automatic inspection in electronic manufacturing.The automatic optical inspection(AOI) system is demanded more precise and intelligent.The traditional inspection methods require large quantity samples of all types to train the inspector,or do some complicated setting.To overcome the disadvantages,an intelligent method was proposed.Firstly,a series of features of soldered joints were defined.Then,an automatic...
Keywords:solder joint  neural networks  machine vision  inspection  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《焊接学报》浏览原始摘要信息
点击此处可从《焊接学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号