首页 | 本学科首页   官方微博 | 高级检索  
     

基于PCA-SIFT特征的目标识别算法
引用本文:王鹤,谢刚. 基于PCA-SIFT特征的目标识别算法[J]. 电视技术, 2013, 37(15)
作者姓名:王鹤  谢刚
作者单位:太原理工大学信息工程学院,山西太原,030024
基金项目:国家自然科学基金项目:基于SDG故障诊断方法研究:60975032;太原市科技项目人才专项明星专题:120247-28
摘    要:针对尺度不变特征变换(SIFT)算法在匹配时特征向量过多,从而导致耗时过长的问题,提出PCA-SIF]算法,对目标进行匹配与识别.首先,利用SIFT算法提取出原图像中稳健的特征点以及特征向量;其次,利用PCA算法对SIFT特征向量的维数进行约减;最后利用降维后的图像与原始图像进行匹配.实验证明,与原始SIFT算法相比,该算法不仅保持了SIFT算法的鲁棒性和稳定性,同时提高了匹配效率,增强了实时性.

关 键 词:尺度不变特征变换  降维  目标识别  图像匹配
收稿时间:2012-10-17
修稿时间:2012-11-11

Target recognition algorithm based on PCA-SIFT
wanghe and xiegang. Target recognition algorithm based on PCA-SIFT[J]. Ideo Engineering, 2013, 37(15)
Authors:wanghe and xiegang
Affiliation:Taiyuan University of Technology Institute of Information Engineering,Taiyuan University of Technology Institute of international exchange
Abstract:In this paper, a target identification and matching algorithm based on PCA-SIFT is proposed to deal with the problem that a long time is taken caused by excessive number of characteristics in the matching with SIFT algorithm. Firstly, we extract the robust and salient feature points and vectors of the image frames according to the local invariant features.Then PCA analytic method is introduced into image matching to reduce the dimensions of SIFT feature vector. Finally, we use the reduced feature points to image matching and analytic methods.Some experimental results show that the algorithm proposed in this paper not only has maintain the robustness and stability , but also improvd the matching efficiency and enhancing the real-time performance,comparing with the original SIFT algorithm.
Keywords:sift  dimensionality reduction   target identification  image matching
本文献已被 万方数据 等数据库收录!
点击此处可从《电视技术》浏览原始摘要信息
点击此处可从《电视技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号