首页 | 本学科首页   官方微博 | 高级检索  
     

移动机器人长期自主环境适应研究进展和展望
引用本文:阮晓钢, 陈晓, 朱晓庆. 基于多重信息增益的移动机器人探索策略[J]. 北京工业大学学报, 2023, 49(9): 990-998. DOI: 10.11936/bjutxb2021120005
作者姓名:阮晓钢  陈晓  朱晓庆
作者单位:1.北京工业大学信息学部, 北京 100124;2.计算智能与智能系统北京市重点实验室, 北京 100124
基金项目:国家自然科学基金资助项目(62103009); 北京市自然科学基金资助项目(4202005)
摘    要:

针对移动机器人在未知环境中自主探索及建图存在盲目性的问题, 提出了一种基于贝叶斯优化评估多重信息增益的探索策略。在候选点提取方法上采用融合前沿点聚类与可通行区域的方式综合衡量提取, 相较于传统的前沿点检测方法有效解决了候选点集合过大及环境信息缺失等问题; 在候选点评估方法上利用贝叶斯优化计算多重信息增益, 综合考虑地图熵值与距离成本, 相较于仅考虑地图熵值选取最佳候选点的方法, 有效改进了机器人在环境中的冗余路径。该算法在机器人操作系统(robot operating system, ROS)中采用Gazebo进行仿真实验验证, 构建环境地图。结果表明, 该方法可以使移动机器人快速有效地探索未知环境, 高质量完成建图任务。



关 键 词:多重信息增益  贝叶斯优化  自主探索  复合提取策略  栅格-八叉树地图  移动机器人
收稿时间:2021-12-07
修稿时间:2022-02-26

Research progress and prospect of long-term autonomous environment adaptation for mobile robots
RUAN Xiaogang, CHEN Xiao, ZHU Xiaoqing. Mobile Robot Exploration Strategy Based on Multiple Information Gain[J]. Journal of Beijing University of Technology, 2023, 49(9): 990-998. DOI: 10.11936/bjutxb2021120005
Authors:RUAN Xiaogang  CHEN Xiao  ZHU Xiaoqing
Affiliation:1.Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China;2.Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing 100124, China
Abstract:Aiming at solving the problem of blindness in autonomous exploration and mapping by mobile robots in unknown environments, an exploration strategy based on Bayesian optimization to evaluate multiple information gains was proposed. In the candidate point extraction method, the method of integrating frontier point clustering and passable area to comprehensively measure and extract was adopted. Compared with the traditional frontier point detection method, it effectively solved the problems of excessive candidate point sets and missing environmental information. The Bayesian optimization was used to calculate multiple information gains considering both map entropy and distance costs. Compared with the method of selecting the best candidate point based solely on map entropy, this method effectively improved the redundancy path of the robot in the environment. Gazebo was used to verify the algorithm in robot operating system (ROS) and build environment map. Results show that the proposed method can enable the mobile robot to explore the unknown environment quickly and efficiently and complete the mapping task with high quality.
Keywords:multiple information gain  Bayesian optimization  autonomous exploration  compound extraction strategy  grid-octree map  mobile robot
点击此处可从《北京工业大学学报》浏览原始摘要信息
点击此处可从《北京工业大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号