首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进跳点搜索和蚁群算法的机器人多目标点巡检规划
引用本文:芮宏斌,李耒,解晓琳,彭家璇,郭旋. 基于改进跳点搜索和蚁群算法的机器人多目标点巡检规划[J]. 动力学与控制学报, 2024, 22(7): 70-79
作者姓名:芮宏斌  李耒  解晓琳  彭家璇  郭旋
作者单位:西安理工大学 机械与精密仪器工程学院, 西安 710048;河南科技大学 农业装备工程学院, 洛阳 471000
基金项目:国家自然科学青年科学基金项目(51905154);2022年陕西省教育厅重点科研计划项目(22JY051);2023年陕西省科技厅重点研发计划项目(2023-YBGY-357)和陕西省技术创新引导专项(2018ZKC-160)
摘    要:针对移动机器人的多目标点巡检规划问题,本文提出了一种融合改进跳点搜索算法(JPS)与蚁群算法(ACO)的路径规划算法.首先,在JPS算法的评估函数中引入角度引导因子,使路径具有更强的导向性;然后,综合考虑路径距离、平滑度、安全性对评估函数的影响,以获得综合性能更优的路径;其次,提出了双向的逆向跳点剔除规则,筛除了多余节点,从而进一步降低路径长度并提高路径平滑度;最后,将多目标优化得到的路径综合性能替代传统旅行商问题(TSP)中的距离因子,并使用自适应蚁群算法来实现多巡检点的路径规划问题.仿真结果表明,改进JPS算法与传统JPS算法相比,具有更好的综合性能;同时应用于多巡检点规划时,具有更强的有效性和实用性.

关 键 词:巡检机器人  路径规划  跳点搜索算法  多目标优化  蚁群系统算法
收稿时间:2023-10-19
修稿时间:2023-11-06

Robot Multi-Target Inspection Planning Based on Improved Jump Point Search and Ant Colony Algorithm
Rui Hongbin,Li Lei,Xie Xiaolin,Peng Jiaxuan,Guo Xuan. Robot Multi-Target Inspection Planning Based on Improved Jump Point Search and Ant Colony Algorithm[J]. Journal of Dynamics and Control, 2024, 22(7): 70-79
Authors:Rui Hongbin  Li Lei  Xie Xiaolin  Peng Jiaxuan  Guo Xuan
Abstract:For the problem of multi target point inspection planning for mobile robots, this paper proposes a path planning algorithm that integrates the Improved Jump Point Search algorithm (JPS) with the Ant Colony Optimization algorithm (ACO). Firstly, an angle-guided factor is introduced into the evaluation function of the JPS algorithm to provide stronger directional guidance for the path. Then, considering the influences of path distance, smoothness, and safety on the evaluation function, a path with better comprehensive performance is obtained. Next, a bidirectional reverse jump point pruning rule is proposed to eliminate redundant nodes, further reducing path length and improving path smoothness. Finally, the path obtained from multi-objective optimization is used to replace the distance factor in the traditional Traveling Salesman Problem (TSP), and an adaptive ant colony algorithm is used to solve the multi target point path planning problem. Simulation results show that the improved JPS algorithm has better comprehensive performance compared to the traditional JPS algorithm. When applied to multi-target point planning, it demonstrates stronger effectiveness and practicality.
Keywords:inspection robot  path planning  jump point search algorithm  multi-objective optimization  ant colony system algorithm
点击此处可从《动力学与控制学报》浏览原始摘要信息
点击此处可从《动力学与控制学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号