首页 | 本学科首页   官方微博 | 高级检索  
     


Energy analysis in fluidized‐bed drying of large wet particles
Authors:S Syahrul  F Hamdullahpur  I Dincer
Abstract:Energy analysis of a fluidized‐bed drying system is undertaken to optimize the fluidized‐bed drying conditions for large wet particles (Group D) using energy models. Three critical factors; the inlet air temperature, the fluidization velocity, and the initial moisture contents of the material (e.g., wheat) are studied to determine their effects on the overall energy efficiency to optimize the fluidized bed drying process. In order to verify the model, different experimental data sets for wheat material taken from the literature are used. The results show that the energy efficiencies of the fluidized‐bed dryer decrease with increasing drying time and become the lowest at the end of the drying process. It is observed that the inlet air temperature has an important effect on energy efficiency for the material where the diffusion coefficient depends on both the temperature and the moisture content of the particle. Furthermore, the energy efficiencies showed higher values for particles with high initial moisture content while the effect of gas velocity varied depending on the material properties. A good agreement is achieved between the model predictions and the available experimental results. Copyright © 2002 John Wiley & Sons, Ltd.
Keywords:drying  energy analysis  energy efficiency  fluidized bed
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号