首页 | 本学科首页   官方微博 | 高级检索  
     


Commutation Torque Ripple Suppression in Three Phase Brushless DC Motor Using Open-end Winding
Authors:Huang  Qi  Luo  Ling  Zhang  Yuan  Cao  Jichao
Affiliation:1.Electrical Engineering, Northwestern Polytechnical University, Xi’an, 710029, China
;2.Electrical Engineering, Shenyang Institute of Automation (SIA), Chinese Academy of Sciences, Shengyang, 110169, China
;3.Mechanical Engineering, National Engineering Research Center for Small and Special Precision Motors, Guiyang, 550081, China
;
Abstract:

Three phase brushless DC motor has the characteristics of high power density, simple structure and excellent speed regulation performance, which is widely used in the field of electric drive. Open-end winding brushless DC motor has no neutral point, and each phase winding is electrically isolated, which can realize the independent control of each phase winding. Compared with Y-connected brushless DC motor, the open-end winding brushless DC motor has a wider range of speed regulation under the same voltage, and has certain fault-tolerant performance, which is suitable for the application of low voltage and large current. Compared with the multiphase fault-tolerant motor, open-end winding brushless DC motor has simpler structure and higher winding utilization rate. However, the open-end winding brushless DC motor still has torque ripple, among which the cogging torque is related to the motor body structure, while commutation torque ripple is affected by the mutual inductance of the winding and the current freewheeling loop. The commutation process of the open-winding brushless DC motor is analyzed, and it is concluded that the current change rates of the turn-off phase and turn-on phase are equal under the ideal back electromotive force(back-EMF), which can ensure that the non-commutation phase current and the electromagnetic torque kept constant. The overlapping commutation with phase current closed-loop method is proposed to suppress the commutation torque ripple of open-end winding BLDC motor, and the applied voltage on turn-off phase and delayed time of turn-off phase in overlapping commutation are derived, the sliding mode observer is used to calculate the electromagnetic torque. MATLAB simulation and experimental results verify the effectiveness of this method.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号